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The problem of Wang and Uhlenbeck on the imposition of boundary conditions for space 
in the Fokker-Planck-Kramers equation is solved for Brownian motion under uniform and 
gravitational potentials. These cases with the full consideration of inertial effects lead to a mod- 
ified diffusion equation with time-dependent diffusion coefficients determined by the initial 
condition of the velocity distribution. Moreover, the former case is applied to the rate theory 
for the diffusion limited reaction in liquids and new results have been obtained especially for the 
short time behavior where inertial effects play an important role. 

1. I n t r o d u c t i o n  

Propert ies of  diffusion processes within the f ramework of  Fick's  law are well- 
known and these are often found in s tandard textbooks treating the diffusion equa- 
t ion with boundary  condit ions [1,2]. The diffusion equat ion is valid for the long 
time limit where the mot ion  of  the Brownian particle is overwhelmingly governed 
by the random forces resulting from many  collisions, whose dynamic behavior  is 
essentially represented by the diffusion coefficient. However ,  when the time scale 
approaches  toward  that  o f  a single collision, we must  introduce another  parameter  
characterizing the collision time. In this short time domain,  we also have to take 
into account  the change of  the mot ion  governed by laws of  mechanics such as 
Newton ' s  equat ion which describes mot ion  in vacuum. In other words,  the sur- 
rounding molecules behaves like a fluid in the large time scale, whereas in the short  
time, propert ies  of  individual molecules are shown up. Hence,  in the long time 
limit, the change in m o m e n t u m  is not  so important  as that  for the short  t ime scale. 
Consequently,  when we treat the diffusion processes of  a particle in a low friction 
medium or we are interested in a dynamic processes in the short  time region, we 
should take into account  the distribution of  the velocity as well as that  o f  the posi- 
tion. The case where the former is accounted for is corresponding to Brownian 

© J.C. Baltzer AG, Science Publishers 



50 A. Morita / Diffusion processes with inertial effects 

motion with inertial effects. Although the usual procedure to treat inertial effects 
is to use the Fokker-Planck-Kramers equation (FPK), we have the difficulty in 
this procedure when we impose the boundary conditions in space, which was 
addressed explicitly Wang and Uhlenbeck long time ago [3]. And improvements 
are still made based on FPK [4,5] but these are worked out using approximate 
methods. 

In this paper, we shall derive the modified diffusion equation which are not 
only identical to FPK but also subject in the boundary conditions in space. The pre- 
sent method is valid for the cases where Brownian motion takes place with (a) 
free, (b) gravitational and (c) harmonic potentials. These are the cases where the 
position of the Brownian particle is a Gaussian random variable in which diffusion 
processes with inertial effects in the natural boundary condition are fully known. 
It is shown that when inertial effects are considered, the diffusion coefficient 
depends explicitly upon time due to the projection of the distribution of the velocity 
onto the time coordinate without employing the projection operator method. As 
an application of the present work, we shall treat the diffusion limited chemical 
reactions where it is assumed that reaction takes place when a Brownian particle 
touches a sink in space. The time-dependent reaction rate k without inertial effects 
based on the Smoluchowski equation is proportional to t -1/2, which indicates that 
k becomes enormously big when t--~ 0, whereas k from the present study avoids the 
divergence at t ~ 0. It is also becomes clear that inertial effects make the dynamics 
slow. This treatment of the reaction rate is connected to the quenching of photo- 
activated molecules and arises explicitly from the dynamics of the Brownian parti- 
cle, which has different aspects from the rate theory based on the assumption of 
the stationary state [6]. 

2. Theory and discussion 

The Fokker-Planck-Kramers  equation for the probability density P(x, v, t) 
which describes the probability of finding a Brownian particle by P(x, v, t) dx dv in 
the range of the position, x and x + dx as well as the velocity v and v + dv at time t 
is given by the following expression: 

OP(x, v, t) OP , f ( x )  OP ~ kaT 02P 
Ot +VO~xt m Ov - #  v~ + fl m coy 2 ' (1) 

where m,f(x) ,  #, kB and T are the mass, external force, friction coefficient, the Boltz- 
mann constant and the absolute temperature, respectively. Wang and Uhlenbeck 
[3] noted long time ago that it was difficult to solve eq. (1) by imposing a boundary 
condition for x even in the simplest case of free Brownian motion wheref (x)  = 0. 
The recent treatments [4, 5] suggest that the problem has not been understood com- 
pletely. We propose an approach to find the solution. To this end, as before [6], 
we introduce the function, ~P(x, u, t) by the expression: 
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k~(x, u, t) = exp u z e(x, v, t)e - i~ dv 
O0 

and transform eq. (1) onto 

O~(X,U,t) 0 (~__ k~T ) 
Ot t- i -~x uff' + iu f ( x )  if, = - f l u  Ogs 

m OU" 

By expanding k~(x, u, t) with respect to u, 

O(x,u,t) = Z an(x't)(iu)n 
n = 0  

we find that 

(2) 

(3) 

(4) 

Oao(x, t) _ Oal (x, t) 
Ot Ox ' 

(5) 

Oal Oa2 kBT Oao f ( x )  0 (6) 
0----~ +/3al-20---x  m Ox ~- m ao= , 

o Oa, Oa,+1 kBTOan- l+ f (X)an_ l=O ( n = 2 , 3 , 4 , . . . ) ,  
O---t + flan - (n + 1) O ~  m Ox m 

(7) 

where in view of eqs. (2) and (4), the distribution function W(x, t) as a function of 
x and t, 

/5 W(x,t)  = ao(x,t) = P(x,v,t)  dr ,  (8) 
o o  

and the flux J(x, t) is given by 

F J ( x , t )  = - a l ( x , t )  = v P ( x , v , t ) d v .  (9) 

The modified Smoluchowski equation (MS) obtained from eqs. (5)--(7) for 
W(x, t) was given by an infinite continued fraction including the differential ope- 
rator d /dx when v is distributed by the Maxwell function at t = 0. In general, MS 
which is equivalent to eq. (1) is complicated, because d /dx and f (x )  do not com- 
mute. However, when (a)f(x)  = 0 and (b)f(x) = constant in which cases no coeffi- 
cients in eq. (1) and (3) are explicit functions of x; in fact, d /dx  and f ( x )  do 
commute so that MS will be found readily. This is a very important point to develop 
the present study where we confine ourselves to these two particular cases. 

We shall obtain W(x, t) in the cases o f f (x )  = 0 and f ( x )  = constant. To this 
end, we note that since the operator, d /dx  commutes withf(x) ,  it may be treated as 
a constant in which case we can find g'(x, u, t) easily directly from eq. (3) for the nat- 
ural boundary of x. Or more directly, we can take the following approach. First, 
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we note that the probability densities W(x, t) for the both cases (a) and (b) are 
Gaussian for the natural boundary. Hence the characteristic function ~((, t) is 
given by 

/? ~(~, t) = <e-i~x> = W(x,t)e- i~Xdx=exp[-i~Zl( t)- l~2z2(t)] ,  (10) 
o o  

where 

Zl(t) = (x(t)>, (11) 

Z2 = <x2(t)) - <x(t)> 2 • (12) 

It is important to remember at this stage that the differential operator d /dx in 
the x space is just i( in the Fourier transformed domain of ~ space in view of the 
identity, 

~ dx e-i~Xdx = i~ ~ g(x)e -i~x dx. (13) 

With this in mind, we do not need to get involved with d/dx explicitly. Since we 
are confined to cases (a) and (b), we can regard d/dx as i( in ~((,  t). We emphasize 
here not to tempt to apply this method to the harmonic potential where although 
the process is Gaussian, d /dx does not commute withf(x) .  We find by differentiat- 
ing eq. (10) with respect to t and taking the inverse Fourier transform that 

0 W(x, t) 02 W(x, t) W(x, t) (14) 
Ot -- lz2(t) Ox 2 Zl (t) 0 0 x  ' 

dZ1 (15) 
Zl(t) = d---t- ' 

dZ2 (16) 
z2(t)-  dt 

Note that eq. (14) is MS which is now subject to the introduction of boundary con- 
ditions for x and the first term on the right hand side in eq. (14) due to fluctuations 
in x represents the diffusion process with a time dependent coefficient and the sec- 
ond term can be regarded as a force arising from the non-zero value for <x(t)>, 
which is also time-dependent. Since the latter term makes it difficult to impose the 
boundary condition on eq. (14), we confine ourselves to the simple case of 
Zl (t) = 0, where our modified diffusion equation (5) becomes 

0 W(x, t) 02 W(x, t) (17) 
Ot = lz2(t) Ox 2 

On setting 
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½f0' 7.(t) = z2(t) dt' = ½[Z2(t) - Z2(O)], (18) 

we see that 

o )o 
O-tt = ½z2(t , (19) 

from which it follows that eq. (17) can be reduced to the ordinary diffusion equa- 
tion 

OW(x, 7.) _ o ~ W(x, 7.) (20) 
Or Ox 2 

The mathematical properties of eq. (20) with the boundary condition in x are 
well-known [1,2]. We can readily extend the case in eq. (20) to the three dimensional 
spherically symmetric Brownian motion. If we denote the radial distance by r, the 
second partial derivative on the right hand side ofeq. (20) should be replaced by the 
Laplacian, which leads to 

- [ °w("')l OW(r, 7.) 1 O r2 (21) 
07" r 2 Or Or J"  

As is well-known, if we put 

W(r, r) - Q(r, 7.), (22) 
r 

we see that 

OQ(r, 7.) _ _ ~Q(r,  r) (23) 
007. Or 2 ' 

which shows directly that eq. (23) is identical to eq. (20). The one- and three-dimen- 
sional fluxes, J(x, t) and Jr(r, t) are given by 

OP(x,t) (24) 
J ( x , t )  = -½z2(t) Ox 

and 

1 ~ OP(r,_~r t) [ OQ(r,or t) ] Jr(r , t )=-iz2(t)r  ~ -½z2( t ) [ r  -a(r , t ) , j  (25) 

respectively. Thus, in view of this obvious similarity, we confine ourselves to the 
one-dimensional case in the present work unless stated otherwise. 

The free Brownian motion whose behavior is governed by the following 
Langevin equation (case (a)): 

d2x(t) +/3 dx(t) _ w(t) (26) 
dt 2 dt ' 
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where w(t) is the random acceleration arising from collisions of  the particle with 
the surrounding particles of  the fluid. Furthermore,  

(w(t))  = 0 and (w(tl)w(t2)) = c6(]tl - t2D. 

It is apparent  from eq. (26) that its formal solution is given by 

/o' 1 [1 - ') dt. (27) x(t) = xo + ~ ( 1  - e  -/~t) + ~  

It is obvious that (x( t ) )  in eq. (27) is not constant in general due to the presence 
of  the second term on the right hand side in eq. (27). However,  when either v0 = 0 
which corresponds to the case where the particle does not move at t = 0 or v0 distri- 
butes according to Boltzmann's law, we see that (x( t))  = xo whose time-deriva- 
tive is zero. In the former case, we have 

z(t) - kBT [2/5t - (1 - e-~t)(3 - e - ~ t ) ]  (28) 
2m/52 

where we have used the fluctuation-dissipation theorem: 

2/5 kB T 
m 

Whereas,  for the latter case, 

kBT .  
r( t)  = ~ {/it - 1 + e-~ ') .  (29) 

F rom eqs. (17) and (18), it follows that the t ime-dependent diffusion coefficient is 
given by dr(t) /dt  which is different in the two cases of eqs. (28) and (29) when t is 
small. However,  as t becomes large, both cases give rise to the identical value of  
kB T/m/5 that is nothing but the (time-independent) diffusion coefficient. In other 
words, the time dependent diffusion coefficient is related to the initial velocity, i.e. 
inertial effects. In fig. 1, r(t) is plotted against t in eq. (29) for kBT/m/5 = 1 and 
/5 = 0.1, 0.5, 1.0, 5.0, and 10.0 from the bot tom to the upper curves. The full line 
represents the asymptotic behaviour for the large t, which is given by 

kBT 
r ( t ) = - ~ t  (for large t). (30) 

This is the case where inertial effects are neglected. Whereas we note for small t 
that 

r(t) kBTt2 (/st < <  1) (31) 
= 2-m--m 

This is the case o f /5 -+  0 where the particle is in vacuo suddenly after t = 0 until 
then it has been in contact  with a heat bath which makes the particle be in the ther- 
mal equilibrium over velocity. Note  that r(t) in eq. (31) is independent  of/5.  
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Fig. 1. Plots o f t ( t )  vs. t for (kBT/mfl) = 1 and/3 = 0.1, 0.5, 1.0 and 10.0 from the lower and'the upper 
curves. 

Although r(t) in eq. (28) leads to the same result as that  in eq. (30) for large t, the 
short-time limit in eq. (28) gives 

r(t) kBT =-~m flt 3 ( f o r / 3 t < < l ) ,  (32) 

from which we see that 

lim r(t)-~0 (33) 
f l~O 

that  is expected from the conditions that the particle does not  move at 
t -- 0,v0 -- 0 and it is in vacuo for t>0, j3  = 0. In other words, eq. (33) means that  
the particle stays still for t__> 0. 

F rom eqs. (16)-(18) it follows that the time dependent diffusion coefficients, 
(1/2)z2 (t) that must  be defined in order to take inertial effects into account, for the 
cases in eqs. (28) and (29) are given by 

D ( 1 - e - ~ t )  2 and D ( 1 - e  -~t) 

respectively, where kBT/m/3 is represented by the usual t ime-independent diffu- 
sion coefficient D. The former coet~cient is always smaller than the latter in short 
times, which means that  the speed of  the particle in diffusion in the case of  v0 = 0 is 
slow in comparison of  the initial velocity as given by the Maxwell-Boltzman fac- 
tor. 

In the case where there is an absorbing boundary at x -- 0 and the natural  bound- 
ary at x -- oo, we see that 



56 A. Morita / Diffusion processes with inertial effects 

W ( x , t ) = ~  exp 4T(t) j - - e x p  4T(t) J ' (34) 

where we have assumed that at t = 0, P(x, O) = 6(x - xo). Whereas, for the three- 
dimensional Brownian motion with the absorbing sphere at r = R whose center is 
located at r = 0, and the natural boundary at r = oo, it follows that 

2-~rol ~ ( t ) {  [ ( r -  rO)2]4T(t) J [ (r+rO-2R)2] } ' 4 T - ( - [ )  _ W(r,t) = exp - e x p  - 1 ' (35) 

where we have assumed that W(r, O) = 6(r - ro)/r 2 at t = O. It should be noted that 
W(r, t) in eq. (35) is symmetric by interchanging r with to. Particularly when the 
initial concentration is uniform in eq. (35), we find that the density at t, p(r, t) is 
given by 

p(r,t) = N W(r, t)4 dr0 = N 1 - r e n C ~ ]  . (36) 

This is the usual result [7] when inertial effects are ignored in which case r(t) -- Dt 
where D -- kBT/ml3 is the diffusion coefficient. In eq. (36), N is the number of mole- 
cules in unit volume, the concentration at t = 0. In fig. 2, p(2R, t ) /N is plotted 
against t for/3 = 0.1, 0.5, 1.0, 5.0, and 10.0 from the upper to the lower curves for 
the fixed values of D/R 2 = 1. We see that inertial effects indeed give rise to the sig- 
nificant differences at short times in comparison with the case without the effects. 
From eq. (25), the flux at r -- R obtained from eq. (36) is given by 
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Fig. 2. Plots of  p(2R, t ) /N vs. t for D/R 2 = 1 and/3  = 0.1, 0.5, 1.0, 5.0 and 10.0 f rom the upper to 
the lower curves. 
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jr(r,t)= z2(t) N R f e r f c [ 1 - - - ~ ( r - 2  I, [ ~  R)] + r ~ e x p  

If we put r --- R in eq. (37), we see 

jr(R,t) - ZE(t) NR 1-~ 
2 

4r(t) J } "  

(37) 

(38) 

Here, we note that in view of eq. (18), and if we use the expression of-r(t) in eq. 
(29), it follows that 

z2(t) _ d-r(t) kBT (1 - e - ~ ' ) .  (39) 
2 dt m/3 

It is seen immediately from eq. (38) that if inertial effects are neglected, 

limcjr( R, t) --~ c~ . (40) 
t 0 

But this difficulty is removed in the present case with inertial effects. In fact, eqs. 
(38) and (39) lead to 

)lrnoJr(R,t)--~" ----~- ( R [ 2m ~ k ,  TNR 1 + V--~BT).  (41) 
\ 

Note that the initial flux does not depend on the friction,/3. In fig. 3, -j~(R, t)/NR 
is plotted against t for/3 = 0.1, 0.5, 1.0, 5.0, and 10.0 from the lower to the upper 
curves for the fixed value ofD/R 2 = 1. We see again that the short-time behaviour 
is not as simple as that expected from the ordinary diffusion equation without con- 
sidering inertial effects. The inertial region followed by the asymptotic behavior 
in eq. (41) and the diffusion controlled region where jr(R, t) ,,~ t -1/2 are apparent 
from fig. 3. At this stage, we note in eq. (36) that 

lim p(r,t)--+ N(1 _ R )  . (42) 
I---~ OO 

That means that for the case where the initial concentration at t = 0 is uniformly 
distributed, not all the particles can be absorbed by the wall at r = R. In fact, the 
concentration far away from the wall remains the same. The particles near the 
absorbing sphere are attracted and the rest does not feel the wall. It also implies 
that in the present steady-state case, the equilibrium distribution can depend on the 
initial distribution. Although J(x, t) in one-dimensional motion can be readily 
obtained, we will not develope our discussion further, because the diffusion limited 
reaction is usually treated in the three dimensional space as we have. 

In the case of the Brownian motion under the gravitational potential (case (b)) 
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Fig. 3. Plots of - j , (R,  t ) /NR vs. t for D/ R  2 = 1 and/3 = 0.1, 0.5, 1.0, 5.0 and 10.0 from the lower to 
the upper curves. 

the constant acceleration - g  is added to the right hand side in the Langevin equa- 
tion (26) as given by 

d2x(t) C~d(t) 
dt------- T-  + /3 - .g + w(t). (43) 

The formal solution ofeq. (43) is given by 

~22 ~ l f0 t  x(t) = xo + ~ (1 - e -~`) - (/3t - 1 + e -#t) + [1 - e-#(t-t')]w(tt) d t .  

(44) 
From this equation, we see immediately that x(t) is the Gaussian random 
variable. We can solve the diffusion equation exactly for the case where the initial 
velocity is distributed according to the Maxwell law for which 

ZI (t) = x0 (/3t - 1 + e -zt) (45) 

and 

D 
Z2( t )  = 2 ~ ( / 3 t -  1 + e-/~t). (46) 

We find the diffusion equation in the form ofeq. (14), but in view of eqs. (45) and 
(46), it becomes 

OW(x,t)_ot D(1 -e -~ t ) [  -02W(x't)[ OX 2 "t- C OW(x,t)]Ox ' (47) 

where 
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g 

Note that in eq. (47) we can take into account zl (t), because it happens to give the 
identical time-dependent form to z2(t) so that we need not consider the moving 
boundaries as we shall see later. As in the case of the free Brownian motion, inertial 
effects plays an important role in short times, and they slow down the dynamics in 
the initial stage. 

With the same r(t) as in eq. (29), we can write eq. (47) as 

OW(x,,-)  _ o2W(x,  -) 
+ c (48) 

Or Ox 2 Ox 

The solution of eq. (48) with the reflecting boundary at x = 0 is then given by (see 
p. 57 ofehandrasekhar  [8] 

W(x, t )  = ~ exp 4r(t) J 

+oxp[  x+x< c j}exp[ x0/ 
C_cx erfc ( x  +.Xo--c__r(t)~ (49) 

\ / 
As in case (a), inertial effects make the dynamics slow at the initial stage. 

It should be stressed again that although the case of harmonic potential gives 
the Gaussian x(t), we cannot use the present procedure, because d/dx and x arising 
from the potential do not commute. Also, we see that the Boltzmann transport 
equation with the collision term of Bhatnager, Gross and Krook with f ( x )  = 0 
leads to an integral equation for non-Gaussian W(x, t) which makes MS consider- 
ably more complicated [6]. 
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